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Molecular orbital theory 

 We have seen how the atomic orbital wave function  provides a complete 

description of the distribution of an electron in an isolated atom.  As the wave 

function (WF) (x,y,z) varies from one point in space to another, so does the electron 

density function (x,y,z)  (x,y,z)
2
.  Remember too atomic orbital WFs come in 

several different shapes and sizes. The s are spherically symmetrical, while p, d etc. 

are directed in space.  The p orbitals align along x, y, z, while the d point along and 

between these axes. 

 

Combination of orbitals 

 The function f(x) = ax + b is a linear function of x.  If it were not for the 

constant b it would be a simple proportionality f(x) = ax:  the result of doubling x 

would be to double f(x).  (The constant b merely shifts the result by the same amount 

whatever the value of x.) 

 A linear combination of functions means adding them together under the 

control of mixing coefficients.  If 1 and 2 are combined in this way, 

     = c11 + c22  

the resulting function  has characteristics derived from each of them.  Their 

respective weighting factors are decided by the coefficients c1and c2.  The function  

 = c1(1)
2

 + c22 is not a linear function of 1 but it is a linear function of 2. 

 Let us first consider the combination of two atomic orbitals on the same atom.  

If both are s orbitals such as 1s and 2s the resulting  will obviously also have 

spherical symmetry, i.e. it will be another s obital.  If we combine two p orbitals, say a 

px and a py the result is a p orbital that is directed intermediate between the x and y 

directions.  Next, combine two different kinds of orbitals such as an s and a px.  The 

result is an orbital which possesses characteristics of its component functions s and px.   

This can be seen from the forms of the s and p orbital functions.  First take the s 

orbital s = e
r

.  This function is not directional: it depends solely on distance r from 

the nucleus, and is therefore spherically symmetrical.  The exponential form means 



 2 

that the function is a maximum at the position of the nucleus and decays towards zero 

with increasing r without ever reaching zero. The px orbital function is p = xe
r 

 This 

function too tends to zero at large distances from the nucleus, but the factor x
 

multiplying the function means that p is proportional to x, and therefore directed along 

the x axis.   It is positive for x > 0, negative for x < 0.  The fact that it is zero at r
 
= 0 

means that the p function has a nodal plane running through the nucleus. 

 Next consider a mixing of the s and px
 
orbitals in the ‘hybrid’ orbital

 
sp: 

    sp = e
r

 + xe
r

  

This function also exponentially decays to zero with increasing r.  Since the first term 

is always positive while the second is negative over a part of the x range (x < 0), it 

may be zero at some value of x when the two terms are equal and opposite.  In other 

words it does have a node, but not at r = 0.  The function sp is directed along the x 

axis, but the addition of the s to the positive lobe along +x and to the negative lobe 

along -x produces an expanded lobe along the +x direction and a contracted one along 

x.  What we have just constructed is an sp-hybrid orbital that is used to describe the 

CC sigma bond in the ethyne and N2 molecules. (The other common hybrids, sp
2
 and 

sp
3
 can also be constructed by combining s and p orbital functions, but in these cases 

the mixing coefficients of the s and the p are unequal.) 

 

Molecular orbitals 

 When a pair of atoms approach each other their electron distributions, initially 

spherical, become distorted because the electrons experience, not only the single 

nucleus they saw previously, but another nearby positively-charged nucleus and a 

negatively-charged electron cloud around it.  The electrons respond to the new 

scenario by altering their original distribution so as to take in the new charged centre. 

The interatomic region takes on a cylindrical component that allows each electronic 

cloud increased access to both charged nuclei.  In fact the electron distribution around 

such an atom  even one that has gone to the limit of forming a covalent bond  

does not usually depart much from that in the free atom: the distortion from spherical 

symmetry is actually quite small. 

 If a function of a known form is slightly altered in this way, how can it then be 
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described?  The simplest method is to employ the original function, but to select a 

second one to be added to it, making a ‘linear combination’ as  described above. Such 

a linear combination of atomic orbitals (LCAO) is central to molecular orbital theory.  

By adding a 1s function on hydrogen atom B to a 1s on hydrogen A, the result is a 

function which, close to either atom, is like a 1s (spherical).  But in regions between 

the atoms there is a departure from spherical behaviour as the space comes under the 

effect of both functions.   

 The function    = c11 + c22 describes a molecular orbital (MO) and, like 

the atomic orbital functions 1 and 2, is a function of x, y and z.  When plotted for 

example, along the H2 molecule’s interatomic axis, it shows the shape of the MO.  But 

before this can be done we need to know what to write for the mixing coefficients (or 

‘LCAO’ coefficients) c1 and c2.   

 

The significance of wave functions 

 Molecular orbital wave functions (MO-WFs) have the same properties as 

atomic orbital wave functions. They must be normalized, and any pair of them 

describing two states of the same molecule must be orthogonal. While a quantum 

state may have a well-defined energy (and other properties too) it is important to 

understand that although the state may be defined by a WF,  the functions themselves 

have no direct physical reality. They possess a highly arbitrary nature.  Sometimes you 

find that two rather different-looking functions describe the same physical state, and 

there is no point to take both of them. You cannot calculate a WF and then check it by 

conducting an experiment on a physical system to measure the wave function.   The 

best you can do is to use the function to calculate some property that can be measured, 

such as  

 (1) electron density function  (x,y,z)  (x,y,z)
2 

 (2) energy (Schrödinger eqn.)    E = (H)/

      if is an eigenfunction of H 

      (otherwise)  Eapprox =  Hd 

 

and see if it correctly produces the correct electron density or energy. 
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Normalisation 

 It has been mentioned that when the WF is squared the resulting function 

(x,y,z)  (x,y,z)
2 

is the particle’s density function.  This is a ‘number density’, 

expressing the number of particles per unit volume.  When (x,y,z) is multiplied by 

the volume element dx dy dz the result (x,y,z)
2 

dx dy dz (number density  volume) 

gives the probability of finding the particle in volume dx dy dz around the point x, y, z.  

The probability of finding it in a finite volume V  V2 – V1 around x, y, z is the integral 

dV
V

V

2
2

1
  .   Now make V infinite.  Then the integral dV

2

0


  is the probability of 

finding the particle somewhere in the whole of space.  And if our WF  actually really 

describes a particle (which is the case in our discussion so far), then this probability is 

just 1, so that we must have 

    dV
2

0


 = 1 

This is the normalisation condition that must be obeyed by all WFs, as they describe 

particles that are somewhere in space.   

 A simple example of normalizing an AO wave function appears in the notes 

‘The quantum chemistry of atoms and small molecules’. 

 

 Normalisation of a molecular orbital wave function 

 The condition that a wave function  is normalised is 12

0


  d . 

Substituting from  = c11 + c22 the condition is 

  dccdcc  21
2
2

2
2

2
1

2
1

2

1111 21  

where we now drop off the 0 and  limits on the integrals.  Since the AO WFs 1 and 

2  are each normalized, the first two integrals are unity and the expression reduces to 

 dcc  21
2
2

2
1 21  

The remaining integral depends on 1 and 2 and on the distance between the centres 

of the two atoms.  In regions of space where both 1 and 2 are appreciable, the 



 5 

product 12 makes a large contribution to the integral  d


0 21 , which therefore 

depends on the overlap of functions 1 and 2.  The integral 

   S =  d


0 21  

is thus called the overlap integral of AO-WFs 1 and 2.  As it is a definite integral it 

is a numerical quantity (not a function). 

 The coefficients c1 and c2 are therefore related by the relation 

   Scc 21
2

2
2
1   

which shows that if c1 is large, then c2 is small and vice versa. 

 

Molecular orbitals in the hydrogen molecule 

 A previous section has shown that these MOs can be written as  

    = c11 + c22  

The atomic orbitals 1 and 2 could be taken to be the 1s functions    

  1 = 
a/Zr

eN 1
1


 and  2 = 
a/Zr

eN 2
2


 

taking account of the normalisation factors N1 and N2, the nuclear charge Z and 

scaling the distance r by dividing by the Bohr radius a.  But for the present we don’t 

need these explicit forms for 1 and 2. 

 Recalling that squaring a wave function produces a density function, the 

squares of the LCAO coefficients c1 and c2 can be interpreted as weighting factors of 

the respective atomic orbitals 1 and 2.  But since the two sites are equivalent in the 

hydrogen molecule we must have that c1
2
 = c2

2
 and so there are two possible 

molecular orbital WFs for the hydrogen molecule: 

   + = c(1  +  2) 

 and   = c(1   2) 

 Bearing in mind our remarks on the arbitrary nature of wave functions is there 
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any significant difference between + and ?  Look at the plots of these  functions on 

the next page.  Although the + function (a) is non-zero midway between the atomic 

centres, in (b)  does go to zero, indicating that here there is a nodal plane between 

the atoms.  As the electron density   ||
2
 is zero on this plane, there is no 

negatively charged region to overcome the repulsion of the two positive nuclei.  So  

would be expected to describe a high-energy condition of the H2 molecule.  In (a) on 

the other hand the 12 term in the + function has a maximum value half way 

between the nuclei. It indicates that in (a) the bonding MO + is describing a 

negatively charged region in which the electrons provide a stabilising factor, binding 

the positively charged nuclei and resulting in a low-energy condition, i.e. stability. 

 We obtained the relationship c1 = c2 becaue the AOs that were being 

combined in this example were c1 and c2 were chemically equivalent.  What if they 

were not equivalent, or if there were more than just two coefficients to be calculated? 

We shall write the energy of  as  

    E =  H d /  d

rather than the usual expression E =  H  d so as to preserve the normalisation 

relationship between c1 and c2 that is implied by   d = 1. 

 Cross-multiplying gives 

E (c11 + c22)
2
 d   = (c11 + c22) H (c11 + c22)d

E[c1
2
1

2
 d + 2c1c212 d + c2

2
2

2
 d] =[c1

2
1 H 1 d + 2c1c21 H 2 d +     

c2
2
2 H 2 d]  

 

Recognising the normalisation of 1 and 2 and the definition of the overlap 

integral S, and using the familiar parameters  and  to denote the integrals on the 

right hand side of the last equation, we get 

E(c1
2
+ 2c1c2S  + c2

2
) = c1

21+ 2c1c2+ c2
22    

Differentiate this equation partially with respect to c1 and c2 in turn: 

 (c1
2
+ 2c1c2S  + c2

2
) )/( 1cE   + 2E(c1 + c2S12) = 2c11 + 2c2

 (c1
2
+ 2c1c2S  + c2

2
) )/( 2cE   + 2E(c1S12 + c2) = 2c11 + 2c22  

But since, for energy minimisation, 0)/( 1  cE and  0)/( 2  cE , and neglecting 

the overlap integral S according to current practice, these equations become  

  c1(1 – E) + c2    = 0 
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  c1  + c1(2 – E) = 0 

 

where 1 =  dH 11 ,   2 =  dH 22  and  dH21 .  The first two 

parameters have an obvious meaning:   dH   is the energy of the AO .  The 

last one  is the interaction energy between the AOs 1 and 2.  The energy E and the 

coefficients c1 and c2 can be obtained by recognizing that the secular equations 

constitute linear equations whose solutions can be obtained by recognizing that the 

equations have a non-trivial solution only if the determinant 

    
E

E





121

121




 

is zero.  We therefore ‘extract’ the determinant to form an equation: 

0
2

1






E

E




 
 

    0)()( 2121

2  EE  

This quadratic equation in E has two roots describing the bonding (lower) and 

antibonding energy levels.  Substituting these in turn into the secular equations 

provides the coefficients c1 and c2 of the bonding and antibonding MOs. 

 

Back to the H2 molecule 

 The variation principle provides a powerful tool for calculating the energies 

and wave functions of molecules.  In preparation for Hückel theory (to come later) 

we’ll suppose that the AOs 1 and 2 are chemically equivalent.  Then their energies 

are equal and we can write 1 = 2 (= ).  Divide all through by , getting  

   c1


 E

 + c2  = 0 

   c1  + c1


 E

 = 0 

and parameterize by writing x 

 E

 so that the equations are 

c1x  + c2 = 0  

    c1 + c1x = 0 
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Then the determinantal equation is 
x

x

1

1
 = 0, leading to x = 1,  

   i.e.  E =  +  lower 

    E =    higher 

Substituting for the x values in turn into the equations gives (for x = 1), c1 = c2  and 

(for x = +1),  c1 = c2.  So the MOs and energies of the hydrogen molecule are 

 

+ = c(1  +  2) and   = c(1    2)  

  E+ =  +   and E =   

 

Normalization of the molecular orbital wave function 

 It’s easy to do this for + and   : 

 

1 = )()( 2121

2   ccd d  

1 =      dddc 21

2

2

2

1

2 2  

 

Since all the wave functions like those of the AOs  are already normalized, the first 

two terms are unity.  The 3
rd

 term is the overlap integral S that we neglect at this level 

of MO theory.  So we have 1 = 2c
2
, and so c = 

2

1
.  Try normalising   yourself 

(you’ll find that the normalization factor is the same as that for +).  

 

Final description of the molecular orbitals in the H2 molecule 
 

Antibonding )(
2

1
21     

__________________
  E   

Bonding )(
2

1
21     

________


______
  E  

 

 

The two electrons in the H2 molecule enter the bonding MO with paired spins. 
 

 

 

The overlap integral – a subject of neglect 

 Although we neglect the overlap integral this is not because its value is 

negligible – it isn’t – but because the results of simple MO theory are much the same 

whether or not S is included.  And the calculations are simpler if S is neglected.   So 

we neglect it.  But having said that, it is an informative quantity because it’s a 
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measure of the degree to which the appropriate orbitals interact. 

 W have seen that the overlap integral for the AO functions 1 and 2 is 

   



0

2112  dS   

In (a) the functions 1 and 2 are both 1s AO in the form   = 
aZrNe /

as used before. 

Then since the integrand is everywhere positive, so also must the overlap integral S 

be as it just sums these positive terms over the whole of space.    In (b) the overlap 
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integral is negative, but if the 2s were on the other 2p lobe it would be negative.  

In (c) we have two pz AOs in line with each other.  The positive lobe of the one on the 

left overlaps with the negative lobe of the right hand AO, and so the product will be 

mainly negative.  These contributions integrate to a negative overlap integral, S < 0.  

Sketch (d) shows two px AOs directed perpendicular to the line joining the 1 and 2 

centres to form a  bond.  The two positive lobes overlap as do the two negative 

lobes.  The two terms therefore multiply to give positive products: hence S > 0.  In the 

last case we have an all-positive function (an s AO) on the right overlapping the 

positive and negative lobes of px equally.  So every positive product 12 in the 

integrand above the line will have a corresponding negative one below the line.  The 

result is that these terms integrate to zero, i.e. in this case S12 = 0 and there is no 

interaction between these AOs.  
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 We next introduce a method which treats only the  molecular orbitals 

in a molecule 

 

 Hückel  Molecular Orbital (HMO) theory  

 The principal effect of the computer revolution of modern times is that 

sophisticated calculation methods can now be performed on molecules to yield results 

which may compare favourably with those from experiment.   So it is remarkable that 

an approach formulated by Erich Hückel in the 1930s still survives.  Particularly when 

the method is based on approximations and simplifications that are so drastic that it is 

amazing that the method works at all!  The results of the HMO are not accurate but 

they provide a useful description of a certain kind of molecule. 

 The HMO method is applied to -electron systems.  These may be aromatic 

hydrocarbons like benzene and naphthalene, or conjugated chains like polyenes.  The 

molecule must be planar say in the xy plane, so that the principal atoms contribute 

electrons from their 2pz AOs to the common -electron pool. 

 

Approximations and assumptions of the HMO theory 
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1. Only the  electrons and their orbitals are treated.  The  bonds are considered to be 

a structural framework to hold the molecule together with CC and CH bonds. The  

molecular orbital WF is then regarded as a coating over the framework conferring the 

special properties associated with  delocalised molecules. 

2. For interactions between pairs of carbon 2pz AOs, only those between adjacent 

atoms are considered.  There is thus only one  value  that between bonded atoms. 

3. In common with many other simple molecular orbital methods, all overlap 

integrals 



0

 dS baab   between the 2pz AOs pair a and b are neglected. 

Examples of the applications of HMO 

1. The allyl radical CH2CHCH2 

 As the carbon atom skeleton is C
(1)
C

(2)
 C

(3)
 there are three 2p AOs 1, 2  

and 3 that combine to form MOs that have WFs of the form 

     = c11 + c22 + c33 

and we wish to determine the energies of the MOs and the coefficients c1, c2 and c3. 

 The secular equations are 

 c1(  E) +  c2  +  c3  0  = 0 

 c1  +  c2(  E) +  c3  = 0 

 c1  0  + c2  +  c3(  E) = 0 

The third term in the 1
st
 equation iz zero.  It is actually c313 but remember that 

because of the nearest-neighbour approximation the interaction parameter 13 between 

atoms 1 and 3 is zero.  There is therefore only one species of interaction parameter  

12 and 23, that we call just .  Dividing all through by  as before and 

parameterising x  (  E)/ we get 

 c1x  +  c2     = 0 

 c1  +  c2x  +  c3  = 0 

    c2  +  c3x  = 0 
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which leads to the secular determinantal equation 

 0

10

11

01



x

x

x

   i.e.  x(x
2  2) = 0 

The three roots, x = 0,  2, define the energies of the three MOs.  Before examining 

them let us calculate the LCAO coefficients.  These consist of three sets of c1, c2 and 

c3 – one set for each MO.  They can be got by substituting each x value in turn into the 

secular equations.  Let’s do it for x = 2:  

 c12  +  c2     = 0 

    c1    c22  +  c3  = 0 

    c2    c32  = 0 

The first and third equation express c1 and c3 in terms of c2.  both are c2/2, which can 

be substituted in the second to give c2  2c2  + c2 = 0, which doesn’t tell us much.  But 

from the MO WF expressed in terms of c2 we have 

            = c11 + c22 + c33 

    =  321
2 2
2

 
c

 

where there is still a coefficient to determine.  For this we can use the normalization 

condition  2 d = 1, giving 

 1 = ½ c2
2
[1

2
 d  +  22

2
 d  +  3

2
 d  +  212 d  +  . . .  ] 

But the AO-WFs 1, 2  and 3 are already normalized (we wouldn’t use them 

otherwise) and cross-terms like 12 d are overlap integrals (S12) that we agree to 

neglect.  So the last equation becomes 

   1 = ½ c2
2
[1 + 2 + 1] 

which provides c2.   The final form of the MO-WF is therefore 

   = ½(1 + 22 + 3) 

 Calculate and normalize the other two MO-WFs yourself.  Here are the 

collected results of the allyl problem: 
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3 = ½(1  22 + 3) _________ E3 =   2 

2 = (
1
/2)(1  3)  ________ E2 =   

1 = ½(1 + 22 + 3) _______ E1 =  + 2 

 The scheme shows the ground electronic state of allyl with the three  

electrons occupy the three MO levels in accordance with the Pauli principle.  

 

Example 2. Butadiene CH2CHCHCH2 

 The secular equations may easily be written down by inspection in the same 

way as was done for the allyl radical.  The secular determinantal equation is then 

   0

100

110

011

001



x

x

x

x

 

i.e.      x
4
 – 3x

2
 + 1 = 0 

Although it is a quartic equation it can be solved as a quadratic, yielding the four roots 

x = 1·6180 or x = 0·6180. Substituting these into the secular equations produces 

these four sets of the LCAO coefficients (c1, c2, c3, c4) – again, one set for each MO: 

Energies Ei 

           Coeffts: 

 

  c1i 

 

   c2i 

 

  c3i 

 

   c4i 

  1·6180 0.3717 0.6015   0.6015 0.3717 

  0·6180 0.6015 0.3717 0.3717   0.6015 

 + 0·6180 0.6015  0.3717  0.3717 0.6015 

 + 1·6180 0.3717 0.6015   0.6015   0.3717 

 

 The diagram below shows the structure of the ground electronic state 

butadiene with its four  electrons occupying the two lowest MOs.  Referring to the 

amplitudes of the LCAO coefficients for the four MOs it also shows the nodal 

properties which are reminiscent of those for the particle confined to a line (or 1-
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dimensional box).  Both models agree that the number of nodes increases with energy. 

 

 

  

 Let us calculate the total  electron electron energy (TEE).  In the crude 

model that is the Hückel method you add the MO energies multiplying each with the 

number of electrons it contains.  So for butadiene we get 

  TEE  = 2( + 1·6180) + 2( + 0·6180)  

   = 4 + 4·4720

 

‘Resonance energy’ 

 This brings us to another quantity that is sometimes referred to in chemistry.  

If the double bonds in butadiene were really localized in the 1-2 and 3-4 sites and 

connected by a pure single bond in 2-3 you would expect the TEE to be just that of 

two ethene (C2H4) molecules, i.e. 2  (2 + 2).  However rather than 4 + 4 we 

have just seen that the energy is lower than this: it is  4 + 4·4720  (the parameter  

is negative, remember).  The extra stability predicted by the HMO method is a 

consequence of  electron delocalisation, and used to be referred to as ‘resonance 

energy’, a term that arose from resonating electron-pair structures (another theory, 

quite distinct from MO theory).  It can be measured calorimetrically. 

Other examples  e.g. benzene 
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 It would be nice to be able to tackle now the large number of -conjugated 

molecules that we know including the aromatic hydrocarbons, and even things like 

DNA where the purine and pyrimidene bases in the double helix are aromatic rings.  

But you have seen that a molecule containing n carbon atoms leads to determinant of 

order n and therefore to a polynomial equation of order n.  This would be too tedious 

to do here so I’ll point out here two ways in which the problem is solved: 

(a) the determinant can be input to a computer, which calculates the energies and 

LCAO coefficients (as well as several quantities derived from them).  

(b) If the molecule possesses symmetry (chemically equivalent sites) then 

symmetry theory (e.g. Group Theory) can be applied. 

(You’ll have experience of both of these techniques in the Physical Chemistry 

Practical and Group Theory courses.)  

 It is easy to construct the secular determinant for benzene: 

   0

10001

11000

01100

00110

00011

10001



x

x

x

x

x

x

 

The six roots, x = 1 (twice),  2 imply the following  electronic structure of 

benzene’s ground state (the two doubly degenerate levels could accommodate up to 

four electrons): 

Energy 

E6  =     2   __________ 

E5,4  =     (2)  ========= 

E3,2  =   +  (2)  ====== 

E1 =   +  2   ________ 

 

TEE = 6 +  8.  Compared to benzene’s ‘non-resonating electronic structure’ with 
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three single and two double bonds [three ‘ethene molecules’ with TEE = = 6 +  6] 

benzene has an additional stability of 2||.  All aromatics enjoy large ‘resonance 

energies’. 

 

-electron populations at an atomic site 

 The condition required for the WF  to be normalized is that  d2

0

||


 

should be unity as we have seen that it corresponds to the probability that the particle 

described by  is somewhere in the whole of space. If  describes an LCAO-MO 

 

   = c11 + c22 + c33 + . . . 

this means 

     1  2 d  =      dccdcdcdc 2121

2

3

2

3

2

2

2

2

2

1

2

1 2   

But since we are using normalized AO-WFs r integrals like   dr

2

are equal to unity 

and as we are at the zero-overlap level terms like 2crcsrs d are zero.  We are then 

left with  

   1 =  2

3

2

2

2

1 ccc  

which says that the probability of finding the electron in the whole of space (the left 

hand side) is the sum of the weighting factors |cr|
2
 over the various atomic sites r of 

the molecule.  Therefore the factor |cr|
2
 measures the probability of finding the 

electron at sites r. 

 But this is for only one MO, whereas a molecule will have several (3 in allyl, 4 

in butadiene, 6 in benzene . . .) and so we should write 

  i = c1i1 + c2i2 + c3i3 + . . . 

with a set of coefficients c1i, c2i, c3i, . . . for each MO-WF like i.  Moreover some 
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MOs i are occupied while others will be empty.  The -electron population r at 

atomic site r is proposed to be 

    r = 

2

1




N

i

rii cn  

where ni is the occupation number of the ith MO which is limited to the three values ni 

= 0, 1 or 2. In order to get the net charges on the i
th

 atom which contributes Ni 

electrons to the  system, the  populations are subtracted from Ni:  

    qi = Ni − r 

Example: Calculate the -electron populations and charges at the atomic sites of the 

allyl anion [CH2-CH-CH2]

  

 Recall the -electron structure of the allyl radical:  

3 = ½(1  22 + 3) _________ E3 =   2 

2 = (½)(1  3)  ________ E2 =   

1 = ½(1 + 22 + 3) _______ E1 =  + 2 

Then for the allyl anion, in which there are two electrons in both the 1 and 2 MOs, 

the electron populations in the three atomic sites are 

  p1 = 2  (½)
2
 + 2  (½) + 0  (½)

2
   = 

3
/2 

  p2 = 2  (
1
/2)

2 
 + 2  0 + 0  (

1
/2)

2 
 2  = 1 

  p3 = 2  (½)
2
 + 2  (½) + 0  (½)

2
   = 

3
/2 

which as expected adds up to 4  the number of -electrons in [CH2-CH-CH2]

.  

Since each C atom supplies one electron to the  system, the coulomb charges are 

obtained by subtracting these numbers from 1.0: 

  q1 = 05 q2 = 00 q3 = 05 

These are the ‘partial atomic charges’ at the three carbon atoms, which correctly add 

up to −1 for the anion. 
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-electron bond order 

 The -bond order prs is the amount of ‘double bond’ character between atoms 

r and s.  Like the -electron population r it depends on the LCAO coefficients 

{cri}for the various MOs and the number of electrons populating these MOs.  The -

bond order is thus defined as 

    prs =


N

i

sirii ccn
1

 

Example: Calculate the -bond orders in butadiene CH2CHCHCH2 

 In order to use the relation just given we recall the table of LCAO coefficients 

presented earlier: 

Energies Ei 

           Coeffts: 

 

  c1i 

 

   c2i 

 

  c3i 

 

   c4i 

  1·6180 0·3717 0·6015   0·6015 0·3717 

  0·6180 0·6015 0·3717 0·3717   0·6015 

 + 0·6180 0·6015  0·3717  0·3717 0·6015 

 + 1·6180 0·3717 0·6015   0·6015   0·3717 

 

    1·6180 __________ 

    0·6180 __________  

   + 0·6180 ________  

   + 1·6180 ________  

Then from the expression given, 

 p12 = 2  03717   06015 + 2  06015  03717  = 08944 

 p23 = 2  06015   06015 + 2  03717  03717   = 04473 

 p34 = 2  06015  03717  + 2  03717  06015 = 08944 

So the double bond characters of the inner and outer CC bonds are respectively 89% 

and 45%. 
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Hetero-conjugated systems 

 Atoms other than carbon may take part in conjugated  systems.  All that is 

required is that the atom be a component of a planar part of the molecule and that it 

have an available p orbital directed perpendicular to the molecular plane.  In  

N
H

N S O

H

H

H

N
+

B
-

N
+

B
-

N
+

B
-

H

H

H

pyridine pyrrole thiophene furan
 

molecules like pyridine, pyrrole, furan, thiophene, borazine and the carboxyl group, 

the atoms nitrogen, oxygen sulphur and boron fulfill these requirements, and therefore 

form conjugated  systems.  Phosphorus may do the same.  There are two ways in 

which these atoms may differ from carbon:  

(1) whereas carbon nearly always contributes just one electron to the  system, the 

‘hetero’ atoms may provide a different number  either 0, 1 or 2 depending on its 

number of valence electrons and on its bonding environment.  For example while the 

nitrogen atom in pyridine contributes one  electron, in pyrrole it provides two (check 

it out from the Lewis bonding theory!). 

(2) The electronegativity of the heteroatom will almost certainly be different from that 

of the carbon atom.  (Oxygen and nitrogen for example are more electronegative than 

carbon.)  Since hetero atoms would therefore be expected to influence greater (or less) 

attraction for the -conjugated electrons some way is needed to describe the 

heteroatom’s electronegativity.  This is done by assigning a different Hückel  

parameter to the hetero atom compared with that of carbon.  The reason for selecting 

  is that this quantity is defined as   =   H  d which is the energy of an electron 

in the hetero atom’s 2pz AO.  If the hetero atom is more electronegative than carbon 

then the energy of its 2pz AO (its  value) is less than the  of carbon.  So if the 

hetero atom were nitrogen, for example, we could write something like N =   001 

where the first term on the right is the standard Hückel  (for carbon), showing that 

nitrogen  is 001eV lower than that of carbon.  However this would require  to be 

expressed in eV, whereas the extraordinary beauty of Hückel theory is that it leads to 
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numbers without specifying any numerical values for the Hückel parameters  or , 

and without having to bother with any units, either.  Modifying the  parameter in a 

way consistent with the spirit of the theory is achieved by writing  

    X =  + mX

where mX is some parameter that is appropriate to the hetero atom X and  is the 

standard  for carbon.  Since  is negative, this modification does reduce the energy 

of the 2pz AO of the electronegative atom X as required. 

 Here is a brief table of m values culled from Lowe’s Quantum Chemistry, 

where you’ll find a more extensive list: 

  heteroatom X  mX 

         N:   15 

         N   05 

   
      O:    20 

  
       S      0 

 In order to see the procedure in action consider imidazole, which contains a 

nitrogen atom at position 1 that contributing one electron, and one at position 3 

providing two electrons, to the  MOs: 

    

N
H

N

N
H

N

1H-imidazole
 

Its secular determinant is 

   

E

E

E

E

E



















00

00

05.00

00

005.1

 

The equation for E is obtained by dividing throughout by  in the usual way and 

setting the result to zero: 
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x

x

x

x

x

1001

1100

015.010

0011

10015.1





 = 0 

which leads to 5 roots (E values) for the five MOs. 

 Some people also modify the  parameter of the bonds from X to take account 

of the different lengths of the CX and CC bonds. Other extensions specify 

parameters to bring CH3 or halogen substituents into the  system.  In this way it 

could be used to treat the nucleotide bases (these are heteroaromatic rings) in DNA.  

In fact the simple theory has been extended to perform calculations on molecules 

probably outside the scope of the method, and which would be better treated by other 

existing methods.  Note, however, that unlike most quantum chemical techniques the 

method is not particularly size-limited: the  system can be quite large:  if it involves 

N atoms all that is required is computational software that will solve a matrix 

(determinantal) equation of order N. 

 

 

 


